
EMJ
C 

EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE  
https://emjms.academicjournal.io/index.php/  Volume:5  

 

 

20XX 

European Multidisciplinary Journal of 

Modern Science 

MS 
 
 

 230 
 

 
 

 

Single Layer Artificial Neural Network: Perceptron 
 

 

Samandarov Erkaboy Karimboyevich 

Teacher of computational mathematics and information systems department of applied mathematics and 

intellectual technologies faculty of National university of Uzbekistan named after MirzoUlugbek 

Abdurakhmonov Olim Nematullayevich 

Senior teacher of computational mathematics and information systems department of applied 

mathematics and intellectual technologies faculty of National university of Uzbekistan named after 

MirzoUlugbek 

 
 

Abstract: In this paper, we overview the perceptron that is simple form of artificial neural 

network. In particular, we will consider the structure of the perceptron and its features. Moreover, we 

will overview input values, weights, basis, output value, activation function of perceptron and the 

program in Python that implemented as well as we consider the use cases application of perceptron. 

Keywords: Perceptron, artificial neural network, activation function, bias, weight, artificial 

intelligence. 
 

 

INTRODUCTION 

Whatever event inside a computer happens in a virtual world that is invisible to the human 

eye. What happens in the virtual world is modeled from the real world in which people live. 

The virtual world is digitally displayed objects, properties, algorithms of real world. 

Therefore, although this virtual world is invisible to the human eye, the events of virtual 

world occur in the same way as in the real world in which we live. In this paper, the 

perceptron that we are observed is similar to the  

eyes of human. The perceptron is simple form of artificial neural network. Perceptron is also 

known as a single layer neural network. 

Figure 1 illustrates a neuron (biological neuron) in the human eyes. 

we briefly describe the components of biological neuron. First component of human 

eyesdendrite, is a branched process of a neuron that receives information through chemical 

synapses from the axons of other neurons and transmits it through an electrical signal to the 

body of the neuron from which it grows. 

 

 



EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE 

 
   

 

 231 
 

 

Figure 1 

Next component is known as soma (cell body), the parts of an organism other than the 

reproductive cells. Third component nucleusthe central and most important part of an eye, 

forming the basis for its activity and growth. Myelin she a this substance that forms the 

myelin sheath of nerve fibers. 

Axon is the fifth component. This componentneurite, along which nerve impulses travel from 

the cell body to innervated organs and other nerve cells. 

Last component the axon terminal, also known as the synaptic bouton and terminal bouton, is 

the most distal portion of a neuron axon and is critical for neural communication.  

Below we consider the perceptron that is the component of artificial intelligence based on 

biological neurons in the human eyes. 

Perceptron (English perceptron from Latin. perceptio - perception; it. Perzeptron is a 

mathematical or computer model of information perception by the brain (cybernetic model of 

the brain), proposed by Frank Rosenblatt in 1958 and first implemented in the form of an 

electronic machine "Mark-1" in 1960. Perceptron became one of the first models of neural 

networks, and Mark-1 became the world's first neurocomputer. 

As mentioned above biological neuron and it is components are depicted. Each component 

has own function and the components perform these functions. the functional principle of an 

artificial neural network is similar to the biological neuron’s. 

Thus, each component has a clearly defined function. Below we consider the perceptron 

which is a simple form of an artificial neural network. Figure 2 illustrates the perceptron that 

is used in artificial intelligence. 

 

Figure 2 



EMJ
C 

EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE  
https://emjms.academicjournal.io/index.php/  Volume:5  

 

 

20XX 

European Multidisciplinary Journal of 

Modern Science 

MS 
 
 

 

 232 
 

Each component of perceptron in figure 2 is considered in detail. 𝑥1, 𝑥2 …𝑥𝑚 input 

values.𝑤1, 𝑤2, …𝑤𝑚weights, 𝑤0bias, input values and weights are calculated based on the 

following formula 

 𝑥𝑖 ∗ 𝑤𝑖

𝑛

𝑖=1

 

 Where n is number of input values and weights. After calculating sum 𝑓(𝑥)activation or step 

functions are used to create non-linear neural networks. These functions can change the value 

of neural networks to 0 or 1. that𝑦The value received after the last step is the output value.  

METHODS 

A perceptron takes a vector of real –valued inputs, calculates a linear combination of these 

inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise. 

More precisely, given inputs 𝑥1through 𝑥𝑛 , the output 𝑜(𝑥1, … , 𝑥𝑛) computed by the 

perceptron is 

𝑜 𝑥1, … , 𝑥𝑛 =  
 1 𝑖𝑓 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 > 0

−1 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 
  

Where each 𝒘𝒊is a real-valued constant, or weight, that determines the contribution of input 

𝒙𝒊to the perceptron output, 𝒘𝟎is a bias 

We overview some of the following in relation to what is depicted in the figure 2 representing 

a neuron: 

Step 1: Input signals weighted and combined as net input: Weighted sums of input signal 

reaches to the neuron cell through dendrites. The weighted inputs do represent the fact that 

different input signal may have different strength, and thus, weighted sum. This weighted 

sum can as well be termed as net input to the neuron cell. 

Step 2: Net input fed into activation function: Weighted The weighted sum of inputs or net 

input is fed as input to what is called as activation function. The activation function is a non-

linear activation function. The activation functions are of different types such as the 

following: 

Unit step function; 

Sigmoid function (Popular one as it outputs number between 0 and 1 and thus can be used to 

represent probability); 

Rectilinear (ReLU) function; 

Hyperbolic tangent; 

The diagram below depicts different types of non-linear activation functions. 

Figure 3 depicts following functions: a-Sigmoid function, b-Tanh function, c-ReLU function, 

d-LReLU function. 

Step 3 – Activation function outputs binary signal appropriately: The activation function 

processes the net input based on the unit step (Heaviside) function andoutputs the binary 

signal appropriately as either 1 or 0. The activation function for perceptron can be said to be a 

unit step function. Recall that the unit step function, u(t), outputs the value of 1 when t >= 0 

and 0 otherwise. 

In the case of a shifted unit step function, the function u(t-a) outputs the value of 1 when t >= 



EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE 

 
   

 

 233 
 

a and 0 otherwise. 

 

Figure 3 

Step 3B – Learning input signal weights based on prediction vs actuals: A parallel step is a 

neuron sending the feedback to strengthen the input signal strength (weights) appropriately 

such that it could create an output signal appropriately that matches the actual value. The 

feedback is based on the outcome of the activation function which is a unit step function. 

Weights are updated based on the gradient descent learning algorithm. Here is my post on 

gradient descent. Here is the equation based on which the weights get updated: 

𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖  

Where ∆𝑤𝑖 = 𝜂(𝑡 − 𝑜)𝑥𝑖 

𝜂 −learning rate, 𝑡 −target value, 𝑜 −perceptron output, 𝑥𝑖 −input value 

The main goal of a perceptron is to make accurate classifications. To train a model to do this, 

perceptron weights must be optimizing for any specific classification task at hand. 

The best weight values can be chosen by training a perceptron on labeled training data that 

assigns an appropriate label to each data sample (feature). This data is compared to the 

outputs of the perceptron and weight adjustments are made. Once this is done, a better 

classification model is created! 

The first step in the perceptron classification process is calculating the weighted sum of the 

perceptron’s inputs and weights. 

To do this, multiply each input value by its respective weight and then add all of these 

products together. This sum gives an appropriate representation of the inputs based on their 

importance. 

To increase the accuracy of a perceptron’s classifications, its weights need to be slightly 

adjusted in the direction of a decreasing training error. This will eventually lead to 

minimized training error and therefore optimized weight values. 

Each weight is appropriately updated with this formula: 

𝑤𝑒𝑖𝑔𝑡 = 𝑤𝑒𝑖𝑔𝑡 + (𝑒𝑟𝑟𝑜𝑟 ∗ 𝑖𝑛𝑝𝑢𝑡) 



EMJ
C 

EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE  
https://emjms.academicjournal.io/index.php/  Volume:5  

 

 

20XX 

European Multidisciplinary Journal of 

Modern Science 

MS 
 
 

 

 234 
 

 

Figure 4 

Perceptron – A single-layer neural network comprising of a single neuron 

𝑦 = 𝑔(𝑤0 +  𝑥𝑖𝑤𝑖

𝑚

𝑖=1

) 

Where 𝑦 −output value, 𝑔 −non-linear activation function, 𝑤0 −bias, 𝑥𝑖 −input values, 

𝑤𝑖 −weights,  

RESULTS 

Since the output of a perceptron is binary, we can use it for binary classification, i.e., input 

values belong to only one of two classes. The classic examples used to explain what 

perceptrons can model are logic gates. 

We consider the logic gates in the figure 5. A white circle means an output of 1 and a black 

circle means an output of 0, and the axes indicate inputs. E.g, when we input 1 and 1 to an 

AND gate, the output is 1, the white circle. We can create perceptrons that act like gates: they 

take 2 binary inputs and produce a single binary output. 

However, perceptrons are limited to solving problems that are linearly separable. If two 

classes are linearly separable, this means that we can draw a single line to separate the two 

classes. 

Figure 5 

We can do this easily for the AND and OR gates, but there is no single line that can separate 

the classes for the XOR gate! This means that we can’t use our single-layer perceptron to 

model an XOR gate. 



EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE 

 
   

 

 235 
 

An intuitive way to understand why perceptrons can only model linearly separable problems 

is to look the weighted sum equation (with the bias). 

 𝑊𝑖𝑥𝑖 + 𝑏

𝑁

𝑖=1

 

Above formula is very similar to the equation of a line. (Or, more generally, a hyperplane.) 

Hence, we create a line that everything on one side of the line belongs to one class and 

everything on the other side belongs to the other class.. This line is called the decision 

boundary, and, when we use a single-layer perceptron, we can only produce one decision 

boundary. 

in practice, many problems are actually linearly separable. It can be shown that organizing 

multiple perceptrons into layers and using an intermediate layer, or hidden layer, can solve 

the XOR problem. This is the foundation of modern neural networks. 

Single-Layer Perceptron Code 

We will use object-oriented principles and create a class. In order to construct our perceptron, 

we need to know how many inputs there are to create our weight vector. The reason we add 

one to the input size is to include the bias in the weight vector. 

importnumpy as np 

class Perceptron(object): 

 """Implements a perceptron network""" 

def __init__(self, input_size, lr=1, epochs=100): 

self.W = np.zeros(input_size+1) 

# add one for bias 

self.epochs = epochs 

self.lr = lr 

We also need to implement our activation function. We can simply return 1 if the input is 

greater than or equal to 0 and 0 otherwise. 

defactivation_fn(self, x): 

#return (x >= 0).astype(np.float32) 

return 1 if x >= 0 else 0 

Finally, we need a function to run an input through the perceptron and return an output. 

Conventionally, this is called the prediction. We add the bias into the input vector. Then we 

can simply compute the inner product and apply the activation function. 

def predict(self, x): 

z = self.W.T.dot(x) 

a = self.activation_fn(z) 

return a 

Now we can create a function, given inputs and desired outputs, carry out our perceptron 

learning algorithm. We keep updating the weights for a number of epochs, and iterate through 

the entire training set. We insert the bias into the input when performing the weight update. 



EMJ
C 

EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE  
https://emjms.academicjournal.io/index.php/  Volume:5  

 

 

20XX 

European Multidisciplinary Journal of 

Modern Science 

MS 
 
 

 

 236 
 

Then we can create our prediction, compute our error, and perform our update rule. 

def fit(self, X, d): 

for _ in range(self.epochs): 

for i in range(d.shape[0]): 

x = np.insert(X[i], 0, 1) 

y = self.predict(x) 

e = d[i] - y 

self.W = self.W + self.lr * e * x 

Now that we have our perceptron coded, we can try to give it some training data and see if it 

works. One easy set of data to give is the AND gate. Here is a set of inputs and outputs. 

if __name__ == '__main__': 

 X = np.array([ 

[0, 0], 

[0, 1], 

[1, 0], 

[1, 1] 

 ]) 

d = np.array([0, 0, 0, 1]) 

perceptron = Perceptron(input_size=2) 

perceptron.fit(X, d) 

print(perceptron.W) 

In just a few lines, we can start using our perceptron. At the end, we print the weight vector. 

Using the AND gate data, we should get a weight vector of[−3, 2, 1]. This means that the 

bias is -3 and the weights are 2 and 1 for𝑥1 and𝑥2, respectively. 

To verify this weight vector is correct, we can try going through a few examples. If both 

inputs are 0, then the pre-activation will be−3 + 0 ∗ 2 + 0 ∗ 1 =  −3. When applying our 

activation function, we get 0, which is exactly 0 AND 0. We can try this for other gates as 

well. Note that this is not the only correct weight vector. Technically, if there exists a single 

weight vector that can separate the classes, there exist an infinite number of weight vectors. 

Which weight vector we get depends on how we initialize the weight vector. 

To summarize, perceptrons are the simplest kind of neural network: they take in an input, 

weight each input, take the sum of weighted inputs, and apply an activation function. Since 

they were modeled from biological neurons, they take and produce only binary values. In 

other words, we can perform binary classification using perceptrons. One limitation of 

perceptrons is that they can only solve linearly separable problems. In the real world, 

however, many problems are actually linearly separable. E.g, we can use a perceptron to 

mimic an AND or OR gate. However, since XOR is not linearly separable, we can not use 

single-layer perceptrons to create an XOR gate. The perceptron learning algorithm fits the 

intuition by Rosenblatt: inhibit if a neuron fires when it should not have, and excite if a 

neuron does not fire when it should have. We can take that simple principle and create an 



EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE 

 
   

 

 237 
 

update rule for our weights to give our perceptron the ability of learning. 

DISCUSSION 

Artificial neural networks are information processing systems that are inspired by our 

biological nervous system, such as how our brain processes information. Our human brain 

has around 100 billion neurons, and each neuron has a connection point between 1000 to 

10,000. The human brain is designed to store information and extract it in a way where we 

can extract more than one piece of information from our memory whenever needed. The 

human brain is made up of thousands of powerful parallel processors. 

Similarly, artificial neural networks have neurons placed similarly to the human mind. Each 

neuron is connected with other neurons with certain coefficients. When these networks are 

put through training, information gets passed through these connecting points, which helps 

the network learn. While artificial neural network is welcomed with open arms by most 

people, it does have its advantages as well as disadvantages. 

Single layer can be used only for simple problems. However, its computation time is very 

fast. 

Multi-layer is most of the neural networks expect deep learning. it uses one or two hidden 

layers. The main advantage is they can be used for difficult to complex problems. However, 

they need long training time sometimes. 

Single-layer neural networks can also be thought of as part of a class of feedforward neural 

networks, where information only travels in one direction, through the inputs, to the output. 

Again, this defines these simple networks in contrast to immensely more complicated 

systems, such as those that use backpropagation or gradient descent to function. The 

Perceptron uses the class labels to learn model coefficients. 

CONCLUSION 

Perceptron mimics the neuron in the human brain.Perceptron is termed as machine learning 

algorithm as weights of input signals are learned using the algorithm. 

Perceptron algorithm learns the weight using gradient descent algorithm. Both stochastic 

gradient descent and batch gradient descent could be used for learning the weights of the 

input signals.As a simplified neural network, perceptrons play a critical role in binary 

classification. A perceptron classifies data into two parts (0s and 1s)—a computer’s primary 

language—binary. Because of that, perceptrons are also known as ―linear binary classifiers.‖ 

REFERENCES 

1. Minsky M., Papert S. Perceptrons. – 1969. 

2. Rosenblatt F. Principles of neurodynamics. perceptrons and the theory of brain 

mechanisms. – Cornell Aeronautical Lab Inc Buffalo NY, 1961. 

3. Novikoff A. B. On convergence proofs for perceptrons. – STANFORD RESEARCH 

INST MENLO PARK CA, 1963. 

4. Raiko T., Valpola H., LeCun Y. Deep learning made easier by linear transformations in 

perceptrons //Artificial intelligence and statistics. – PMLR, 2012. – С. 924-932. 

5. Olazaran M. A sociological study of the official history of the perceptrons controversy 

//Social Studies of Science. – 1996. – Т. 26. – №. 3. – С. 611-659. 

6. Marvin M., Seymour A. P. Perceptrons. – 1969. 



EMJ
C 

EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE  
https://emjms.academicjournal.io/index.php/  Volume:5  

 

 

20XX 

European Multidisciplinary Journal of 

Modern Science 

MS 
 
 

 

 238 
 

7. Tattersall G. D., Foster S., Johnston R. D. Single-layer lookup perceptrons //IEE 

Proceedings F-Radar and Signal Processing. – IET, 1991. – Т. 138. – №. 1. – С. 46-54. 

8. Chen H. C., Hu Y. C. Single-layer perceptron with non-additive preference indices and its 

application to bankruptcy prediction //International Journal of Uncertainty, Fuzziness and 

Knowledge-Based Systems. – 2011. – Т. 19. – №. 05. – С. 843-861. 

9. Kanal L. N. Perceptron //Encyclopedia of Computer Science. – 2003. – С. 1383-1385. 


