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Abstract: In the article we study the case of coexistence of exceptional directions of the system. 

dx/dt=X^2 (x), x = (x1 , x2 , x3), 

Here Х2(х) – is homogeneous polynomial vector is a function of degree 2, and X_3^2(x) has a 

factor х3 . 

Keywords: polynomial vector-function, vector norm, equator, manifold, isolated, saddle, knot, 

diametrically. 
 

In this paper, we consider the behavior of the trajectory of a homogeneous polynomial 

differential system of the second degree 

𝑑𝑥

𝑑𝑡
= 𝑋2(𝑥), x = (x1, x2, x3) (1) 

Here Х
2
 (х) – homogeneous polynomial vector - function of degree 2. Let us study the cases 

of coexistence of exceptional directions of the system (1), where Х3
2(х) has a multiplier х3. 

The study will be carried out by the method of work [1]. 

Introducing into system (1), we introduce the substitution  

x = rui (𝑖 = 1,3     ) (2) 

where u = (u1, u2 , u3) – unit vector, r – the norm of the vector x, we get 

 
𝑎) 

𝑑𝑢

𝑑𝑡1
= 𝑋2 𝑢 − 𝑢𝑅(𝑢)

б) 
𝑑𝑟

𝑑𝑡1
= 𝑟𝑅(𝑢)

  (3) 

Where R (u) = X
2
(u) u, dt1 = rdt. (3а) 

On the basis of [1], singular points of the sphere S2 or system (3a) correspond to the 

exceptional directions of system (1), and singular points lying on the equator 𝑢1
2 + 𝑢2

2 = 1 

system (3а) , correspond to the exceptional directions of the integral manifold х3 = 0. 

Substituting u3 = 0 in the system (3а) and then , entering 𝑢1 = 𝜇𝑢2 (or 𝑢2 = 𝜇𝑢1), we get : 

𝑑𝜇

𝑑𝑡1
=

𝑋1
2 𝜇 ,1 −𝜇𝑋2

2(𝜇 ,1)

𝑢2[𝑋2
2 𝜇 ,1 −𝑢2

2𝑅 𝜇 ,1 ]
 , (4) 

 Coordinates of special points of the equator 𝑢1
2 + 𝑢2

2 = 1 spheres S
2
  

will look like. 
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( 
𝜇0

 1+𝜇0
2

,
1

 1+𝜇0
2

, 0) , (−
𝜇0

 1+𝜇0
2

, −
1

 1+𝜇0
2

, 0) 

where μ0 – real root of the equation. 

𝑋1
2 𝜇, 1 − 𝜇𝑋2

2 𝜇, 1 = 0, 𝑋2
2(𝜇0, 1) ≠ 0 (5) 

The nature of these singular points determines the nature of the exceptional directions of the 

manifold х3 = 0. 

To study the exceptional directions of system (1) not lying on the manifold  

х3 = 0 (for which u3≠ 0), in a system (3а) we conduct substitutions 

y = 
𝑢1

𝑢3
 , 𝑧 =  

𝑢2

𝑢3
 then she will look like: 

 
𝑎)  

𝑑𝑦

𝑑𝜏
= 𝑋1

2 𝑦, 𝑧, 1 − 𝑦𝑋3
1 𝑦, 𝑧, 1 = Ф(𝑦, 𝑧)

𝑑𝑧

𝑑𝜏
= 𝑋2

2 𝑦, 𝑧, 1 − 𝑧𝑋3
1 𝑦, 𝑧, 1 = 𝜓(𝑦, 𝑧)

 

б) 
𝑑𝑢3

𝑑𝜏
= 𝑢3[𝑋3

1 𝑦, 𝑧, 1 − 𝑢3
2𝑅 𝑦, 𝑧, 1 ]  

 
 

 
 

 (6) 

Singular points of system (6) determined from the solutions of the system. 

 
u3 = 0

Ф 𝑦, 𝑧 = 0

𝜓 𝑦, 𝑧 = 0
  (7) 

Correspond to the exceptional directions of system (1) that do not lie on the manifold x3 = 0. 

The singular points determined from the solution of the system 

 
𝑋3

1 𝑦, 𝑧, 1 = 0

𝑋2
2 𝑦, 𝑧, 1 = 0

𝑋1
2 𝑦, 𝑧, 1 = 0

  (8) 

Correspond to the singular lines of system (1) (in this case, the singular point 0 is not isolated 

and we will not consider it). 

System (7) may have four , three, two, one or no solution, therefore, system (1) may have 

four, three, two, one or may not have exceptional directed , not lying on the manifold х3 = 0.  

1°. Exceptional directions of system (1) corresponding to singular points determined from 

system (7) or from equation (5), or corresponding to singular points of the first group of the 

sphere S
2,

 we will call exceptional directions of type I or type II, or the first group, 

respectively. 

Lemma 1. Exceptional directions of type II can only be of the first group. 

Proof. All points of the equator 𝑢1
2 + 𝑢2

2 = 1 of sphere S
2
 are singular points of the first 

group, since the equator u3 = 0 is the solution. 

Lemma 2. Singular points of the equator of the sphere S
2
, 𝑢1

2 + 𝑢2
2 = 1 can only be nodes, 

saddles, or open saddle nodes.  

Proof. . Let μ = μ0 be k - multiple real root of equation (5) then, introducing the substitution μ 

- μ0 = μ ̅ into differential equation (4) , we will have the Brno - Bouquet equation [2] 

𝑑𝜇 

𝑑𝑢2
=

[𝑋1
2 𝜇, 1 − 𝜇𝑋2

2(𝜇, 1)]𝜇=𝜇0

 𝑘  𝜇−𝑘 + ⋯

𝑢2[𝑋2
2 𝜇0, 1 + ⋯ ]
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where k = 1,3     , 𝑋2
2 𝜇0, 1 ≠ 0. For it, for even k, the origin of coordinates 𝑢3 = 0, 𝜇 = 0 

there will be an open saddle - a node if k is odd, and a node (saddle) when 

[𝑋1
2 𝜇, 1 − 𝜇𝑋2

2(𝜇, 1)]𝜇=𝜇0

 𝑘  
Х2

2 𝜇0, 1 > 0 (< 0) 

Therefore, the singular points of the equator 𝑢1
2 + 𝑢2

2 = 1 of sphere S
2
 there will also be only 

nodes, saddles or open saddles - nodes. 

Lemma 3. System (1) may not have exceptional directed to the manifold x3 = 0 if the 

identity holds. 

Proof. Indeed, when identity (9) is satisfied, splitting (5) is fulfilled identically and on the 

equator 

𝑢1
2 + 𝑢2

2 = 1 Spheres S
2
 there are no singular points, therefore, there are no exceptional 

directions to the manifold x3 of system (1).  

Lemma 4. System (3a) at the equator 𝑢1
2 + 𝑢2

2 = 1 of sphere S
2
 can have six, four, two 

singular points (two diametrically opposite), if D < 0, D = 0, D > 0 respectively, here 

D = [108 
𝑏110−𝑎200

𝑏200
 

2

−
2

3
( 
𝑏110−𝑎200

𝑏200
 )( 

𝑏020−𝑎110

𝑏200
 ) − 2

𝑎020

𝑏200
 ]

2 
+ [ -  

𝑏110−𝑎200

𝑏200
 

2

+

+
3(𝑏020−𝑎110 )

𝑏200
 ]3

 

where 𝑎𝑖𝑗𝑘 , 𝑏𝑖𝑗𝑘  - coefficients of homogeneous polynomials Х1
2 х , Х2

2(х) accordingly. 

Proof. It follows from the fact that equation (5) is presented in the form 

𝑏200𝜇
3 +  𝑏110 − 𝑎200 𝜇

2 +  𝑏200 − 𝑎110 𝜇 − 𝑎020 = 0 

Last at D < 0 have 3 at D = 0 two (with one double), and at D > 0 one real solution: therefore, 

system (3a) in the case D < 0 have 6, when D = 0 four and in case D > 0 two (diametral 

opposite) singular points.  

Lemma 5. If system (3а) has six (two diametrically opposite) singular points on the equator 

of the sphere S
2
, then all six cannot be of the saddle type. 

Proof. Similar to the proof of Lemma 2 in [3]. 

Lemma 6. If (9) identity holds, then system (1) cannot have four exceptional directions of 

type I . 

Proof. When identity (9) is fulfilled, system (7) can be written as: 

 Ф 𝑦, 𝑧 = 𝑎0 + 𝑎1𝑦 + 𝑎2𝑧 + 𝑦𝑓1(𝑦, 𝑧)

𝜓 𝑦, 𝑧 = 𝑏0 + 𝑏1𝑦 + 𝑏2𝑧 + 𝑧𝑓2(𝑦, 𝑧)
  

As we know [4], such a system cannot have four solutions; therefore, system (1) when 

identity (9) is satisfied does not have four exceptional directions of type I.  

2°. Let system (1) have four exceptional directions of type I , then it can be reduced to the 

form with the help of an unexpressed affine transformation. 

 

𝑑𝑥1

𝑑𝑡
=  1 + 𝑎1 𝑋1

2 +  
1 − 𝛼

𝛽
+

1 − 𝛽

𝛼
𝑐 + 𝑏1 𝑥1𝑥2 + 𝑐1𝑋2

2 +  𝑐1 − 1 𝑥1𝑥3 − 𝑐𝑥2𝑥3

𝑑𝑥2

𝑑𝑡
= 𝑘[𝑋1

2 − 𝑥1𝑥3 +  𝑎 − 𝑏1 𝑋1
2 −  𝑎 − 𝑐1 𝑥1𝑥3 +  

1 − 𝛼

𝛽
+

1 − 𝛽

𝛼
𝑎 + 𝑎1 𝑥1𝑥2]

𝑑𝑥3

𝑑𝑡
= 𝑎1𝑥1𝑥3 + 𝑏1𝑥2𝑥3 + 𝑐1𝑋3

2  
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System (6a) then takes the form of an equation. 

𝑑𝑧

𝑑𝑦
= 𝑘

𝑦 𝑦 − 1 + 𝑎𝑧 𝑧 − 1 +   
1 − 𝛼
𝛽

+
1 − 𝛽
𝛼 𝑎 𝑦𝑧

𝑦 𝑦 − 1 + 𝑐𝑧 𝑧 − 1 +  
1 − 𝛼
𝛽

+
1 − 𝛽
𝛼 𝑐 𝑦𝑧

 

Each singular point of which corresponds to the upper parts of the exceptional directions of 

type I of system (1). The hemisphere S
2
 has the following singular points 

A(0, 0, 1), B(0, 1, 
1

 2
 ), C(1, 0, 

1

 2
 ), E(α, β, 

1

 𝛼2+𝛽2
 ), 𝐹𝑖(

𝜇 𝑖

 𝛼2+𝛽2
,

1

 𝛼2+𝛽2
, 0) 

where 𝑖 = 1,3     . 

Lemma 7  

а) If D < 0, 1 - α – β > 0, α > 0, β > 0 ( or1 – α – β < 0,  

𝛼 ∙ 𝛽 < 0), then on the hemisphere S
2 

two of the singular points A, B, C, E will be anti 

saddles , the other two are saddles , and two of the singular points Fi will be nodes ; 

b) If D > 0, 1 – 𝛼 − 𝛽 > 0, 𝛼 > 0, 𝛽 < 0 (or 1- 𝛼 − 𝛽 < 0 , 𝛼 ∙ 𝛽 < 0) , then on the 

hemisphere S2 two of the singular points A, B, C, E will be antisaddles , and of the singular 

points of 𝐹𝑖  two merge, and the double singular point  

𝐹1 = 𝐹2 will be open, F3 – node; 

c) If D > 0, 1- α – β > 0, α > 0, β > 0 (or 1 – α –β < 0, 𝛼 ∙ 𝛽 < 0), then two of the singular 

points Fi disappear, one will be a node. 

Proof. On the S
2
 the sum of the singular point indices is equal to 2, and on the hemisphere it 

is equal to 1 [5]. Considering also that if 1 – 𝛼 − 𝛽 > 0, 𝛼 > 0, 𝛽 > 0 or 1- 𝛼 − 𝛽 < 0 , 𝛼 ∙
𝛽 < 0, then of the four singular points A, B, C, E will be anti saddles, and the other two 

saddles, with D < 0 we have a case 

a) at D = 0 happening  

b) at D > 0 case ,  

c) distribution of singular points of the semi-equator of the sphere S
2
.  

Lemma 8. а) If 1 – 𝛼 − 𝛽 < 0, 𝛼 > 0, 𝛽 > 0, 𝑘(𝑎 − 𝑐) < 0 or 

1 – 𝛼 − 𝛽 > 0, 𝛼 < 0, 𝛽 < 0 , 𝑘 𝑎 − 𝑐 > 0 or 1 – 𝛼 − 𝛽 > 0,  

𝛼 ∙ 𝛽 < 0), k(a – c ) < 0 , D > 0. 

b) Under condition a) on the hemisphere S
2
 of the four singular points A, B, C, E, three 

saddles and an anti saddle, on the semi-equator 𝑢1
2 + 𝑢2

2 = 1 – three knots. 

The number of exceptional directions of the system (1) corresponding to singular points such 

as anti-saddle , saddle, opening saddle - node of the sphere S
2
 will be denoted by N(a) , N(c) 

and N(cy) . 

The lemmas that have been proved imply: 

Theorem 1. а)If 1 - α – β > 0, α > 0, β > 0 ( or 1 – α – β < 0,  

𝛼 ∙ 𝛽 < 0) D < 0, then N(a) = 4, N(c) = 3. 

b) D = 0, то N(a) = 3, N(c) = 2, N(cy) = 1 

c) D > 0 , то N(a) = 3, N(c) = 2 
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Theorem 2. a) If 1 - α – β > 0, 𝛼 ∙ 𝛽 < 0 (1 - α – β > 0, α < 0, β < 0) 

D = 0, we have N(a) = 3, N(c) = 2, N(cy) = 1 

б) D > 0 , in this situation will be N(a) = 3, N(c) = 2. 

Theorem 3. If 1 - α – β < 0, 𝛼 > 0, 𝛽 > 0 𝑜𝑟 1 - α – β < 0, α < 0,  

 β < 0 𝑜𝑟 1 - α – β > 0, α ∙β < 0, we will have N(a) = 4, N(c) = 3. 
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